a2 United States Patent

Pope et al.

US009210140B2

US 9,210,140 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

REMOTE FUNCTIONALITY SELECTION

Inventors: Steven L. Pope, Costa Mesa, CA (US);
David Riddoch, Cambridge (GB)

Assignee: SOLARFLARE
COMMUNICATIONS, INC., Irvine,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 592 days.

Appl. No.: 12/858,345

Filed: Aug. 17,2010
Prior Publication Data
US 2011/0202983 Al Aug. 18, 2011

Related U.S. Application Data

Provisional application No. 61/235,256, filed on Aug.
19, 2009.

Int. Cl1.

GO6F 9/00 (2006.01)

HO4L 29/06 (2006.01)

GO6F 21/57 (2013.01)

GO6F 21/62 (2013.01)

HO4L 12/24 (2006.01)

U.S. CL

CPC HO04L 63/061 (2013.01); GO6F 21/572

(2013.01); GO6F 21/6218 (2013.01); HO4L
41/0803 (2013.01); HO4L 41/28 (2013.01);
GO6F 2221/2149 (2013.01); HO4L 63/12
(2013.01)
Field of Classification Search
USPC e 726/14-16
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

12/1993 Koenen
6/1994 Crosswy et al.

(Continued)

5,272,599 A
5,325,532 A

FOREIGN PATENT DOCUMENTS

EP 620521 A2 10/1994
WO 0148972 Al 7/2001
(Continued)
OTHER PUBLICATIONS

Aguiar et al. “Embedded systems’ virtualization: The next chal-
lenge?” Rapid System Prototyping (RSP), 2010 21st IEEE Interna-
tional Symposium on 2010, pp. 1-7.*

(Continued)

Primary Examiner — Roderick Tolentino
(74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
LLP; Warren S. Wolfeld

(57) ABSTRACT

A network interface device providing a set of functions in
hardware and being operable in first and second modes: in a
first mode, the network interface device being configured to
operate with a selected configuration of the set of functions;
and in a second mode, the network interface device being
operable to select a particular configuration of the set of
functions in accordance with configuration instructions
received at the network interface device; the network inter-
face device being configured to, on receiving a network mes-
sage having one or more predetermined characteristics and
comprising an authentication key and one or more configu-
ration instructions defining a particular configuration of the
set of functions: verify the authentication key; and if the
authentication key is successfully verified, select the particu-
lar configuration of the set of functions defined in the con-
figuration instructions of the network message.

32 Claims, 2 Drawing Sheets

~ 103

~ 104

106

O]

US 9,210,140 B2

Page 2
(56) References Cited 2003/0081060 Al 5/2003 Zenget al.
2003/0172330 Al 9/2003 Barron et al.
U.S. PATENT DOCUMENTS 2003/0191786 Al 10/2003 Matson et al.
2003/0202043 Al 10/2003 Zeng et al.
5.046.189 A 8/1999 Koenen et al. 2003/0214677 Al 11/2003 Bhaskar et al.
6:098:112 A 8/2000 Ishijima et al. 2004/0034603 Al 2/2004 Hastings et al.
6.157.721 A 12/2000 Shear et al. 2004/0071250 Al 4/2004 Bunton et al.
6.160.554 A 12/2000 Krause 2004/0141642 A1 7/2004 Zeng et al.
6304945 Bl 10/2001 Koenen 2004/0190533 Al 9/2004 Modi et al.
6349.035 Bl 2/2002 Koenen 2004/0190538 Al 9/2004 Bunton et al.
6.438,130 Bl /2002 Kagan ctal. 2004/0190557 Al 9/2004 Barron
6.502.203 B2 12/2002 Barron et al. 2004/0193734 Al 9/2004 Barron et al.
6,530,007 B2 3/2003 Olarig et al. 2004/0193825 Al 9/2004 Garcia et al.
6.667.918 B2 12/2003 Leader et al. 2004/0210754 Al 10/2004 Barron et al.
6718392 Bl 4/2004 Krause 2004/0252685 Al 12/2004 Kagan et al.
6.728.743 B2 4/2004 Shachar 2005/0008223 Al 1/2005 Zenget al.
6.735.642 B2 5/2004 Kagan et al. 2005/0018221 Al 1/2005 Zeng et al.
6.768.996 Bl 7/2004 Steffens et al. 2005/0021968 Al 1/2005 Zimmer et al.
6.904.534 B2 6/2005 Koenen 2005/0038918 Al 2/2005 Hilland et al.
6950961 B2 9/2005 Krause et al. 2005/0038941 Al 2/2005 Chadalapaka et al.
6978331 Bl 12/2005 Kagan ctal. 2005/0039171 Al 2/2005 Avakian et al.
7.093.158 B2 8/2006 Barron et al. 2005/0039172 Al 2/2005 Rees et al.
7.099.275 B2 8/2006 Sarkinen et al. 2005/0039187 Al 2/2005 Avakian et al.
7.103.626 Bl 9/2006 Recio et al. 2005/0066333 Al 3/2005 Krause et al.
7103744 B2 9/2006 Garcia et al. 2005/0172181 A1 8/2005 Huliehel
7136397 B2 112006 Sharma 2005/0219278 Al 10/2005 Hudson
7143412 B2 112006 Koenen 2005/0219314 Al 10/2005 Donovan et al.
7149227 B2 12/2006 Stoler et al. 2005/0231751 A1 10/2005 Wu et al.
7151744 B2 12/2006 Sarkinen et al. 2005/0246552 Al* 11/2005 Badeetal. 713/193
7216225 B2 52007 Haviv of al. 2006/0026443 Al 2/2006 McMahan et al.
7240350 BL 7/2007 Eberhard et al. 2006/0045098 Al 3/2006 Krause
7:245:627 B2 7/2007 Goldenberg et al. 2006/0126619 Al 6/2006 Teisberg et al.
7,254,237 Bl 8/2007 Jacobson et al. 2006/0165074 Al 7/2006 Modi et al.
7.285.996 B2 10/2007 Fiedler 2006/0168153 Al* 7/2006 Lin ..o, 709/220
7316.017 Bl 1/2008 Jacobson et al. 2006/0193318 Al 82006 Narasimhan et al.
77346702 B2 3/2008 Haviv 2006/0228637 Al 10/2006 Jackson et al.
7386.619 Bl 6/2008 Jacobson ef al. 2006/0248191 Al 11/2006 Hudson et al.
7403.535 B2 7/2008 Modi et al. 2007/0188351 Al 82007 Brown etal.
7404190 B2 7/2008 Krause et al. 2007/0220183 Al 9/2007 Kagan et al.
7'502.826 B2 3/2009 Barron of al. 2008/0024586 Al 1/2008 Barron
7500355 B2 3/2000 Hanes et al. 2008/0109526 A1 5/2008 Subramanian et al.
7.518.164 B2 4/2009 Smelloy et al. 2008/0115216 A1 5/2008 Barron et al.
7,551,614 B2 6/2009 Teisberg et al. 2008/0115217 Al 5/2008 Barron et al.
7.554.993 B2 6/2009 Modi et al. 2008/0126509 Al 5/2008 Subramanian et al.
7573.967 B2 82009 Fiedler 2008/0135774 A1 6/2008 Hugers
7.580.415 B2 82009 Hudson et al. 2008/0147828 Al 6/2008 Enstone et al.
7,580,495 B2 8/2009 Fiedler 2008/0148395 Al* 6/2008 Brock 726/21
7:617:376 B2 11/2009 Chadalapaka et al. 2008/0148400 Al 6/2008 Barron et al.
7,631,106 B2 12/2009 Goldenberg et al. 2008/0177890 Al 7/2008 Krause et al.
7.650,386 B2 1/2010 McMahan et al. 2008/0209532 Al* 82008 Wenetal ... 726/9
7.653.754 B2 1/2010 Kagan ctal. 2008/0244060 A1 10/2008 Cripe et al.
7,657,659 Bl* 2/2010 Lambethetal. ... 709/250 2008/0301406 Al 12/2008 Jacobson et al.
7,688,853 B2 3/2010 Santiago et al. 2008/0304519 Al 12/2008 Koenen et al.
7,757,232 B2 7/2010 Hilland et al. 2009/0007228 Al* 1/2009 Balayetal. 726/1
7:801:027 B2 9/2010 Kagan et al. 2009/0158048 Al* 6/2009 Kimetal. ..o 713/184
7.802.071 B2 9/2010 Oved 2009/0165003 Al 6/2009 Jacobson et al.
7'813.460 B2 10/2010 Fiedler 2009/0201926 Al 8/2009 Kagan et al.
7827442 B2 11/2010 Sharma et al. 2009/0213856 Al 82009 Paatela et al.
7835375 B2 11/2010 Sarkinen et al. 2009/0268612 Al 10/2009 Felderman et al.
7848322 B2 12/2010 Oved 2009/0287936 A1* 11/2009 Ohkado 713/183
7.856.488 B2 12/2010 Cripe et al. 2009/0300434 Al* 12/2009 Gollubetal. 714/53
7.864.787 B2 1/2011 Oved 2009/0302923 Al 12/2009 Smeloy et al.
7904.576 B2 3/2011 Krause et al. 2010/0088437 Al 4/2010 Zahavi
7921178 B2 4/2011 Haviv 2010/0138298 Al* 6/2010 Fitzgerald etal. 705/14.53
7.929.5390 B2 4/2011 Kagan etal. 2010/0138840 Al 6/2010 Kagan et al.
7,930,437 B2 4/2011 Kagan et al. 2010/0169507 Al* 7/2010 Sahitaetal. 709/250
7,934,959 B2 5/2011 Rephaeli et al. 2010/0169880 Al 7/2010 Haviv et al.
7,978,606 B2 7/2011 Buskirk et al. 2010/0188140 Al 7/2010 Smeloy
8,000,336 B2 8/2011 Harel 2010/0189206 Al 7/2010 Kagan
2002/0059052 A1 5/2002 Bloch et al. 2010/0265849 Al 10/2010 Harel
2002/0112139 Al 8/2002 Krause et al. 2010/0274876 Al 10/2010 Kagan etal.
2002/0129293 Al 9/2002 Hutton et al. 2010/0306540 Al* 12/2010 Yamadaetal. 713/168
2002/0140985 Al 10/2002 Hudson 2010/0318800 Al* 12/2010 Simonetal. 713/171
2002/0156784 Al 10/2002 Hanes et al. 2011/0004457 Al 1/2011 Haviv et al.
2003/0007165 Al 1/2003 Hudson 2011/0010557 Al 1/2011 Kagan etal.
2003/0055900 ALl* 3/2003 Glasetal.cccoooo....e... 709/205 2011/0022695 Al* 1/2011 Dalaletal.cccoooo........ 709/222
2003/0058459 Al 3/2003 Wu etal. 2011/0029669 Al 2/2011 Chuang et al.
2003/0063299 Al 4/2003 Cowan et al. 2011/0029847 Al 2/2011 Goldenberg et al.
2003/0065856 Al 4/2003 Kagan et al. 2011/0044344 Al 2/2011 Hudson et al.

US 9,210,140 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0058571 Al
2011/0083064 Al
2011/0096668 Al
2011/0113083 Al
2011/0116512 Al
2011/0119673 Al
2011/0173352 Al

3/2011 Bloch et al.
4/2011 Kagan et al.
4/2011 Bloch et al.
5/2011 Shahar

5/2011 Crupnicoff et al.
5/2011 Bloch et al.
7/2011 Sela et al.

FOREIGN PATENT DOCUMENTS

WO 0230130 Al 4/2002
WO 0235838 Al 5/2002
WO 2008127672 A2 10/2008
WO 2009134219 Al 112009
WO 2009136933 Al 11/2009
WO 2010020907 A2 2/2010
WO 2010087826 Al 8/2010
WO 2011043769 Al 4/2011
WO 2011053305 Al 5/2011
WO 2011053330 Al 5/2011
OTHER PUBLICATIONS

Mohamed, N. “Self-configuring communication middleware model
for multiple network interfaces” Computer Software and Applica-
tions Conference, 2005. COMPSAC 2005. 29th Annual International
20085, pp. 115-120 vol. 2.*

Extended European search report mailed Dec. 10, 2010 in EP 10 17
3326.

Gordon E. Moore; Electronics, vol. 38, No. 8, pp. 114-117, 1965,
Apr. 19, 1965.

Jack B. Dennis and Earl C. Van Horn; Communications of the ACM,
vol. 9, No. 3, pp. 143-155, Mar. 1966.

Marvin Zelkowitz; Communications of the ACM, vol. 14, No. 6, p.
417-418, Jun. 1971.

J. Carver Hill; Communications of the ACM, vol. 16, No. 6, p.
350-351, Jun. 1973.

F.F. Kuo; ACM Computer Communication Review, vol. 4 No. 1, Jan.
1974.

Vinton Cerf, Robert Kahn; IEEE Transactions on Communications,
vol. COM-22, No. 5, pp. 637-648, May 1974.

V. Cerf, et al.; ACM Computer Communication Review, vol. 6 No. 1,
p. 1-18, Jan. 1976.

Robert M. Metcalfe and David R. Boggs; Communications of the
ACM, vol. 19, Issue 7, pp. 395-404, Jul. 1976.

P. Kermani and L. Kleinrock; Computer Networks, vol. 3, No. 4, pp.
267-286, Sep. 1979.

John M. McQuillan, et al.; Proceedings of the 6th Data Communica-
tions Symposium, p. 63, Nov. 1979.

Andrew D. Birrell, et al.; Communications of the ACM, vol. 25, Issue
4, pp. 260-274, Apr. 1982.

Ian M. Leslie, et al.; ACM Computer Communication Review, vol.
14, No. 2, pp. 2-9, Jun. 1984.

John Nagle; ACM Computer Communication Review, vol. 14, No. 4,
p- 11-17, Oct. 1984.

Robert M. Brandriff, et al.; ACM Computer Communication Review,
vol. 15, No. 4, Sep. 1985.

C. Kline; ACM Computer Communication Review, vol. 17, No. 5,
Aug. 1987.

Christopher A. Kent, Jeffrey C. Mogul; ACM Computer Communi-
cation Review, vol. 17, No. 5, pp. 390-401, Oct. 1987.

Gary S. Delp, et al.; ACM Computer Communication Review, vol.
18, No. 4, p. 165-174, Aug. 1988.

David R. Boggs, et al.; ACM Computer Communication Review, vol.
18, No. 4, p. 222-234, Aug. 1988.

H. Kanakia and D. Cheriton; ACM Computer Communication
Review, vol. 18, No. 4, p. 175-187, Aug. 1988.

V. Jacobson; ACM Computer Communication Review, vol. 18,No.4,
p- 314-329, Aug. 1988.

David D. Clark; ACM Computer Communication Review, vol. 18,
No. 4, pp. 106-114, Aug. 1988.

Paul V. Mockapetris, Kevin J. Dunlap; ACM Computer Communi-
cation Review, vol. 18, No. 4, pp. 123-133, Aug. 1988.

Margaret L. Simmons and Harvey J. Wasserman; Proceedings of the
1988 ACM/IEEE conference on Supercomputing, p. 288-295,
Orlando, Florida, Nov. 12, 1988.

David A. Borman; ACM Computer Communication Review, vol. 19,
No. 2, p. 11-15, Apr. 1989.

R. Braden, et al.; ACM Computer Communication Review, vol. 19,
No. 2, p. 86-94, Apr. 1989.

David D. Clark, et al.; IEEE Communications Magazine, vol. 27, No.
6, pp. 23-29, Jun. 1989.

David R. Cheriton; ACM Computer Communication Review, vol. 19,
No. 4, p. 158-169, Sep. 1989.

Derek Robert McAuley; PhD Thesis, University of Cambridge, Sep.
1989.

Craig Partridge; ACM Computer Communication Review, vol. 20,
No. 1, p. 44-53, Jan. 1990.

D.D. Clark and D. L. Tennenhouse; ACM Computer Communication
Review, vol. 20, No. 4, pp. 200-208, Sep. 1990.

Eric C. Cooper, et al.; ACM Computer Communication Review, vol.
20, No. 4, p. 135-144, Sep. 1990.

Bruce S. Davie; ACM Computer Communication Review, vol. 21,
No. 4, Sep. 1991.

C. Brendan S. Traw, et al.; ACM Computer Communication Review,
vol. 21, No. 4, p. 317-325, Sep. 1991.

Ian Leslie and Derek R. McAuley; ACM Computer Communication
Review, vol. 21, No. 4, p. 327, Sep. 1991.

Mark Hayter, Derek McAuley; ACM Operating Systems Review, vol.
25, Issue 4, p. 14-21, Oct. 1991.

Gregory G. Finn; ACM Computer Communication Review, vol. 21,
No. 5, p. 18-29, Oct. 1991.

Greg Chesson; Proceedings of the Third International Conference on
High Speed Networking, Nov. 1991.

Michael J. Dixon; University of Cambridge Computer Laboratory
Technical Report No. 245, Jan. 1992.

Danny Cohen, Gregory Finn, Robert Felderman, Annette DeSchon;
Made available by authors, Jan. 10, 1992.

Gene Tsudik; ACM Computer Communication Review, vol. 22, No.
S, pp. 29-38, Oct. 1992.

Peter Steenkiste; ACM Computer Communication Review, vol. 22,
No. 4, Oct. 1992.

Paul E. McKenney and Ken F. Dove; ACM Computer Communica-
tion Review, vol. 22, No. 4, Oct. 1992,

Erich Ruetsche and Matthias Kaiserswerth; Proceedings of the IFIP
TC6/WG6.4 Fourth International Conference on High Performance
Networking IV, Dec. 14, 1992.

C. Traw and J. Smith; IEEE Journal on Selected Areas in Communi-
cations, pp. 240-253, Feb. 1993.

E. Ruetsche; ACM Computer Communication Review, vol. 23, No. 3,
Jul. 1993.

Jonathan M. Smith and C. Brendan S. Traw; IEEE Network, vol. 7,
Issue 4, pp. 44-52, Jul. 1993.

Jeffrey R. Michel; MSci Thesis, University of Virginia, Aug. 1993.
Mark David Hayter; PhD Thesis, University of Cambridge, Sep.
1993.

Jonathan Kay and Joseph Pasquale; ACM Computer Communication
Review, vol. 23, No. 4, pp. 259-268, Oct. 1993.

W. E. Leland, et al.; ACM Computer Communication Review, vol.
23, No. 4, p. 85-95, Oct. 1993.

C. A. Thekkath, et al.; ACM Computer Communication Review, vol.
23, No. 4, Oct. 1993.

Raj K. Singh, et al.; Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, p. 452-461, Portland, Oregon, Nov. 15, 1993.
Peter Druschel and Larry L. Peterson; ACM Operating Systems
Review, vol. 27, Issue 5, p. 189-202, Dec. 1993.

Matthias Kaiserswerth; IEEE/ACM Transactions on Networking,
vol. 1, No. 6, p. 650-663, Dec. 1993.

Chris Maeda, Brian Bershad; ACM Operating Systems Review, vol.
27, Issue 5, p. 244-255, Dec. 1993.

Greg Regnier, et al.; IEEE Micro, vol. 24, No. 1, p. 24-31, Jan. 1994.

US 9,210,140 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

J. Vis; ACM Computer Communication Review, vol. 24, No. 1, pp.
7-11, Jan. 1994.

Danny Cohen, Gregory Finn, Robert Felderman, Annette DeSchon;
Journal of High Speed Networks, Jan. 3, 1994.

Gregory G. Finn and Paul Mockapetris; Proceedings of InterOp 94,
Las Vegas, Nevada, May 1994.

Stuart Wray, et al.; Proceedings of the International Conference on
Multimedia Computing and Systems, p. 265-273, Boston, May 94.
Various forum members; Message-Passing Interface Forum, Univer-
sity of Tennessee, Knoxville, 1994, May 5, 1994.

Raj K. Singh, et al.; ACM Computer Communication Review, vol. 24,
No. 3, p. 8-17, Jul. 1994.

P. Druschel, et al.; ACM Computer Communication Review, vol. 24,
No. 4, Oct. 1994.

Sally Floyd; ACM Computer Communication Review, vol. 24, No. 5,
p. 8-23, Oct. 1994.

A. Edwards, et al.; ACM Computer Communication Review, vol. 24,
No. 4, pp. 14-23, Oct. 1994.

L. S. Brakmo, et al.; ACM Computer Communication Review, vol.
24, No. 4, p. 24-35, Oct. 1994.

A.Romanow and S. Floyd; ACM Computer Communication Review,
vol. 24, No. 4, p. 79-88, Oct. 1994.

R. J. Black, L. Leslie, and D. McAuley; ACM Computer Communi-
cation Review, vol. 24, No. 4, p. 158-167, Oct. 1994.

Babak Falsafi, et al.; Proceedings of the 1994 conference on
Supercomputing, pp. 380-389, Washington D.C., Nov. 14, 1994.
Mengjou Lin, et al.; Proceedings of the 1994 conference on
Supercomputing, Washington D.C., Nov. 14, 1994.

Nanette J. Boden, et al.; Draft of paper published in IEEE Micro, vol.
15, No. 1, pp. 29-36, 1995, Nov. 16, 1994.

Thomas Sterling, et al.; Proceedings of the 24th International Con-
ference on Parallel Processing, pp. 11-14, Aug. 1995.

K. Kleinpaste, P. Steenkiste, B. Zill; ACM Computer Communica-
tion Review, vol. 25, No. 4, p. 87-98, Oct. 1995.

C. Partridge, J. Hughes, J. Stone; ACM Computer Communication
Review, vol. 25, No. 4, p. 68-76, Oct. 1995.

A. Edwards, S. Muir; ACM Computer Communication Review, vol.
25, No. 4, Oct. 1995.

J. C. Mogul; ACM Computer Communication Review, vol. 25, No. 4,
Oct. 1995.

Thorsten von Eicken, et al.; ACM Operating Systems Review, vol. 29,
Issue 5, p. 109-126, Dec. 1995.

D. L. Tennenhouse, D. J. Wetherall; ACM Computer Communication
Review, vol. 26, No. 2, pp. 15-20, Apr. 1996.

Paul Ronald Barham; PhD Thesis, University of Cambridge, Jul.
1996.

Chi-Chao Chang, et al.; Proceedings of the 1996 ACM/IEEE confer-
ence on Supercomputing, Pittsburgh, Nov. 17, 1996.

Joe Touch, et al.; “Atomic-2” slides, Gigabit Networking Workshop
’97 Meeting, Kobe, Japan, Apr. 1997, 10pp.

Joe Touch, et al.; “Host-based Routing Using Peer DMA,” Gigabit
Networking Workshop *97 Meeting, Kobe, Japan, Apr. 1997, 2pp.
O. Angin, et al.; ACM Computer Communication Review, vol. 27,
No. 3, pp. 100-117, Jul. 1997.

Charles P. Thacker and Lawrence C. Stewart; ACM Operating Sys-
tems Review, vol. 21, Issue 4, p. 164-172, 1987, Oct. 1997.

Ed Anderson, et al.; Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, p. 1-17, San Jose, California, Nov. 16, 1997.
Harvey J. Wassermann, et al.; Proceedings of the 1997 ACM/IEEE
conference on Supercomputing, p. 1-11, San Jose, California, Nov.
16, 1997.

Philip Buonadonna, et al.; Proceedings of the 1998 ACM/IEEE con-
ference on Supercomputing, p. 1-15, Orlando, Florida, Nov. 7, 1998.
Parry Husbands and James C. Hoe; Proceedings of the 1998 ACM/
IEEE conference on Supercomputing, p. 1-15, Orlando, Florida, Nov.
7, 1998.

Michael S. Warren, et al.; Proceedings of the 1998 ACM/IEEE con-
ference on Supercomputing, Orlando, Florida, Nov. 7, 1998.

John Salmon, et al.; Proceedings of the 1998 ACM/IEEE conference
on Supercomputing, Orlando, Florida, Nov. 7, 1998.

Boon S. Ang, et al.; Proceedings of the 1998 ACM/IEEE conference
on Supercomputing, Orlando, Florida, Nov. 7, 1998.

S. L. Pope, et al.; Parallel and Distributed Computing and Networks,
Brisbane, Australia, Dec. 1998.

M. de Vivo, et al.; ACM Computer Communication Review, vol. 29,
No. 1, pp. 81-85, Jan. 1999.

M. Allman; ACM Computer Communication Review, vol. 29, No. 3,
Jul. 1999.

Steve Muir and Jonathan Smith; Technical Report MS-CIS-00-04,
University of Pennsylvania, Jan. 2000.

Patrick Crowley, et al.; Proceedings of the 14th international confer-
ence on Supercomputing, pp. 54-65, Santa Fe, New Mexico, May 8,
2000.

Jonathan Stone, Craig Partridge; ACM Computer Communication
Review, vol. 30, No. 4, pp. 309-319, Oct. 2000.

W. Feng and P. Tinnakornsrisuphap; Proceedings of the 2000 ACM/
IEEE conference on Supercomputing, Dallas, Texas, Nov. 4, 2000.
Jenwei Hsieh, et al.; Proceedings of the 2000 ACM/IEEE conference
on Supercomputing, Dallas, Texas, Nov. 4, 2000.

Ian Pratt and Keir Fraser; Proceedings of IEEE Infocom 2001, pp.
67-76, Apr. 22, 2001.

Regnier G., “Protocol Onload vs. Offload,” 14th Symposium on High
Performance Interconnects, Aug. 23, 2006, 1pp.

Montry G., OpenFabrics Alliance presentation slides, 14th Sympo-
sium on High Performance Interconnects, Aug. 23, 2006, 8pp.

Bilic Hrvoye, et al.; article in Proceedings of the 9th Symposium on
High Performance Interconnects, “Deferred Segmentation for Wire-
Speed Transmission of Large TCP Frames over Standard GbE Net-
works,” Aug. 22, 2001, Spp.

Bilic Hrvoye, et al.; presentation slides from 9th Symposium on High
Performance Interconnects, “Deferred Segmentation for Wire-Speed
Transmission of Large TCP Frames over Standard GbE Networks,”
Aug. 22, 2001, 9pp.

Bruce Lowekamp, et al.; ACM Computer Communication Review,
vol. 31, No. 4, Oct. 2001.

Piyush Shivam, et al.; Proceedings of the 2001 ACM/IEEE confer-
ence on Supercomputing, pp. 57, Denver, Nov. 10, 2001.

Robert Ross, et al.; Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, pp. 11, Denver, Nov. 10, 2001.

E. Blanton and M. Allman; ACM Computer Communication Review,
vol. 32, No. 1, Jan. 2002.

Murali Rangarajan, et al.; Technical Report DCR-TR-481, Computer
Science Department, Rutgers University, Mar. 2002.

Jon Crowcroft, Derek McAuley; ACM Computer Communication
Review, vol. 32, No. 5, Nov. 2002.

Charles Kalmanek; ACM Computer Communication Review, vol.
32, No. §, pp. 13-19, Nov. 2002.

Jonathan Smith; ACM Computer Communication Review, vol. 32,
No. 5, pp. 29-37, Nov. 2002.

NR Adiga, et al.; Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pp. 1-22, Baltimore, Nov. 16, 2002.

Steven J. Sistare, Christopher J. Jackson; Proceedings of the 2002
ACM/IEEE conference on Supercomputing, p. 1-15, Baltimore, Nov.
16, 2002.

R. Bush, D. Meyer; IETF Network Working Group, Request for
Comments: 3439, Dec. 2002.

Pasi Sarolahti, et al.; ACM Computer Communication Review, vol.
33, No. 2, Apr. 2003.

Tom Kelly; ACM Computer Communication Review, vol. 33, No. 2,
pp. 83-91, Apr. 2003.

Jeffrey C. Mogul; Proceedings of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, pp. 25-30, May 18, 2003.

Derek McAuley, Rolf Neugebauer; Proceedings of the ACM
SIGCOMM 2003 Workshops, Aug. 2003.

Justin Hurwitz, Wu-chun Feng; Proceedings of the 11th Symposium
on High Performance Interconnects, Aug. 20, 2003.

Vinay Aggarwal, et al.; ACM Computer Communication Review,
vol. 33, No. 5, Oct. 2003.

Wu-chun Feng, et al.; Proceedings of the 2003 ACM/IEEE confer-
ence on Supercomputing, Phoenix, Arizona, Nov. 15, 2003.

US 9,210,140 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Jiuxing Liu, et al.; Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, Phoenix, Arizona, Nov. 15, 2003.

Srihari Makineni and Ravi Iyer; Proceedings of the 10th International
Symposium on High Performance Computer Architecture, pp. 152,
Feb. 14, 2004.

Cheng Jin, etal.; Proceedings of IEEE Infocom 2004, pp. 1246-1259,
Mar. 7, 2004.

Andy Currid; ACM Queue, vol. 2, No. 3, 2004, May 1, 2004.

Greg Regnier, et al.; Computer, [IEEE Computer Society, vol. 37, No.
11, pp. 48-58, Nov. 2004.

Gregory L. Chesson; United States District Court, Northern District
California, San Francisco Division, Feb. 4, 2005.

Edward D. Lazowska, David A. Patterson; ACM Computer Commu-
nication Review, vol. 35, No. 2, Jul. 2005.

W. Feng, et al.; Proceedings of the 13th Symposium on High Perfor-
mance Interconnects, Aug. 17, 2005.

B. Leslie, et al.; J. Comput. Sci. & Technol., vol. 20, Sep. 2005.

P. Balaji, et al.; Proceedings of the IEEE International Conference on
Cluster Computing, Sep. 2005.

Humaira Kamal, et al.; Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing, Seattle, p. 30, Washington, Nov. 12, 2005.
Sumitha Bhandarkar, et al.; ACM Computer Communication
Review, vol. 36, No. 1, pp. 41-50, Jan. 2006.

H. K. Jerry Chu; Proceedings of the USENIX Annual Technical
Conference, Jan. 1996.

Ken Calvert; ACM Computer Communication Review, vol. 36, No. 2,
pp. 27-30, Apr. 2006.

Jon Crowcroft; ACM Computer Communication Review, vol. 36, No.
2, pp. 51-52, Apr. 2006.

Greg Minshall, et al.; ACM Computer Communication Review, vol.
36, No. 3, pp. 79-92, Jul. 2006.

David Wetherall; ACM Computer Communication Review, vol. 36,
No. 3, pp. 77-78, Jul. 2006.

Patrick Geoffray, HPCWire article: http://www.hpcwire.com/fea-
tures/17886984 html, Aug. 18, 2006.

Geoffray P., “Protocol off-loading vs on-loading in high-perfor-
mance networks,” 14th Symposium on High Performance Intercon-
nects, Aug. 23, 2006, 5pp.

Jose Carlos Sancho, et al.; Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, Tampa, Florida, Nov. 11, 2006.
Sayantan Sur, et al.; Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, Tampa, Florida, Nov. 11, 2006.

Steven Pope, David Riddoch; ACM Computer Communication
Review, vol. 37, No. 2, pp. 89-92, Mar. 19, 2007.

Kieran Mansley, et al.; Euro-Par Conference 2007, pp. 224-233,
Rennes, France, Aug. 28, 2007.

M. Kaiserswerth; IEEE/ACM Transactions in Networking vol. 1,
Issue 6, pp. 650-663, Dec. 1993.

Danny Cohen, et al.; ACM Computer Communication Review, vol.
23, No. 4, p. 32-44, Jul. 1993.

J. Evans and T. Buller; IEEE TCGN Gigabit Networking Workshop,
2001, Apr. 22, 2001.

M.V. Wilkes and R M. Needham; ACM SIGOPS Operating Systems
Review, vol. 14, Issue 1, pp. 21-29, Jan. 1980.

Dickman, L., “Protocol OffLoading vs OnlLoading in High Perfor-
mance Networks,” 14th Symposium on High Performance Intercon-
nects, Aug. 23, 2006, 8pp.

Mogul J., “TCP offload is a dumb idea whose time has come,’
USENIX Assoc., Proceedings of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, May 2003, pp. 24-30.

Petrini F., “Protocol Off-loading vs On-loading in High-Performance
Networks,” 14th Symposium on High Performance Interconnects,
Aug. 23, 2006, 4pp.

>

* cited by examiner

U.S. Patent Dec. 8, 2015 Sheet 1 of 2 US 9,210,140 B2

104
) 109 111
{ ! 103
o 105
107 {08
11
! ! 108
(
110]
102
G, 1
102
205 207)
B (‘ﬁ_‘ 200 105
110]_&I 106
R 1

208

U.S. Patent Dec. 8, 2015 Sheet 2 of 2 US 9,210,140 B2

105

:><: ~ 303
FIG. 3
105
102 401 402 301
! ! !
Local Non-local

© ‘ : /o
)))
403 404 405

US 9,210,140 B2

1
REMOTE FUNCTIONALITY SELECTION

BACKGROUND

This invention relates to network interface devices and
methods for securely selecting the function set of an elec-
tronic device by means of a novel network interface device.

In order to maximise the value extracted from a new elec-
tronic product design, a manufacturer will often produce sev-
eral different versions of the product which share the same
basic hardware but differ in the functions they provide. This
allows a manufacturer to charge different amounts for essen-
tially the same hardware on the basis that less expensive
models will have some of their functions disabled. Following
this manufacturing paradigm allows a manufacturer to take
advantage from the cost benefits of producing a single hard-
ware design in large quantities, as opposed to producing
several hardware designs in smaller quantities.

For example, a single microchip design can be produced
with different function sets being enabled for different prod-
uct lines at the time of manufacture. Chip functions may be
enabled or disabled in hardware through the use of program-
mable registers defining the capabilities of the chip, through
the use of external components connected to the chip so as to
cripple certain functions, or by brute-force, such as removing
external pins or destroying certain areas of the chip. Alterna-
tively, chip functions may be enabled or disabled through the
use of different versions of firmware operating on or in com-
bination with the chip.

With respect to the use of firmware to enable or disable
certain functions in hardware, it is well-known for firmware
to be updateable by an end user through the use of software
and hardware tools, or by replacing the chip carrying the
firmware. However, these methods require the interaction of
the end user (whose technical skill is unknown and could be
very limited) and do not provide a secure channel through
which updates to the product functionality can be applied. In
some cases, it is also possible for programmable chip regis-
ters to be reset but this typically requires specialist hardware
which is not available to the end user and requires the product
to be returned to the vendor.

There is therefore a need for an improved method for
securely modifying the functions provided by an electronic
product that does not require the interaction of a skilled end-
user or technician. For example, it would be advantageous to
both the end user and the vendor if there were a mechanism by
which the end-user could securely purchase a higher level of
product functionality without requiring the end-user to
upgrade the hardware of the electronic product. Similarly, it
would be advantageous if there were a mechanism by which
the configuration settings of a device could be securely man-
aged on behalf of the end-user.

SUMMARY

According to a first aspect of the present invention there is
provided a network interface device providing a set of func-
tions in hardware and being operable in first and second
modes: in a first mode, the network interface device being
configured to operate with a selected configuration of the set
of functions; and in a second mode, the network interface
device being operable to select a particular configuration of
the set of functions in accordance with configuration instruc-
tions received at the network interface device; the network
interface device being configured to, on receiving a network
message having one or more predetermined characteristics
and comprising an authentication key and one or more con-

25

40

45

55

2

figuration instructions defining a particular configuration of
the set of functions: verify the authentication key; and

if the authentication key is successfully verified, select the
particular configuration of the set of functions defined in the
configuration instructions of the network message.

The configuration instructions defining the particular con-
figuration of the set of functions may comprise one or more
of:

(a) enabling one or more functions of the set;

(b) disabling one or more functions of the set;

(c) modifying the parameters of a function of the set.

The network interface device can be configured to effect
the selection of the particular configuration of the set of
functions defined in the configuration instructions by one or
more of:

(a) selecting the state of one or more switches at the net-
work interface device;

(b) writing values to a hardware register or non-volatile
state memory of the network interface device; and

(c) updating firmware stored at the network interface
device.

Preferably the network message comprises one or more
data packets received in accordance with a predetermined
messaging protocol. The protocol may be the Intelligent Plat-
form Management Interface protocol, or an extension
thereof.

The one or more predetermined characteristics may
include one or more of:

(a) apredetermined identifier in the headers of at least some
of the data packets which together comprise the network
message;

(b) apredetermined pattern of data in the network message;
and

(c) address information in the network message identifying
the endpoint to which the message is directed such as IP
address and/or port number.

Suitably the network interface device is configured to enter
the second mode on receiving the network message. The
network interface device can be configured to enter the sec-
ond mode on successfully verifying the authentication key.

Preferably the configuration instructions are encrypted and
the authentication key is the encrypted configuration instruc-
tions. The network interface device can be configured to
verify the authentication key by decrypting the encrypted
configuration instructions, the authentication key being suc-
cessfully verified if the encrypted configuration instructions
are successfully decrypted. Alternatively the authentication
key is one of a password, a cryptographically-signed certifi-
cate, a pseudorandom number or a hash of a set of predeter-
mined data.

Preferably the network interface device is configured to
verify the authentication key in accordance with the Transport
Layer Security (TLS) protocol or Internet Protocol Security
(IPsec) protocol.

Suitably the network message is received from a local
network entity and the configuration instructions comprised
in said network message originate at a remote network entity,
the local network entity being a proxy for the remote network
entity.

Preferably there exists a cryptographic pair of keys and the
authentication key is generated using a private cryptographic
key of the pair. Preferably a public cryptographic key of the
pair is stored at the network interface device and the network
interface device is configured to verify the authentication key
using the public key. Preferably the network interface device
is configured to use the public key to establish an encrypted
channel over which the network message is received. Prefer-

US 9,210,140 B2

3

ably the private key is stored at a network entity from which
the configuration instructions originate, the said network
entity being configured to generate the authentication key and
transmit the authentication key and configuration instructions
to the network interface device. The network entity may be
accessible to the network interface device over the internet.

Suitably the network interface device includes a Trusted
Platform Module and the Trusted Platform Module holds the
public key. The endorsement key of the Trusted Platform
Module may be used to establish the encrypted channel.

Preferably the encrypted channel is established in accor-
dance with the Transport Layer Security (TLS) protocol or
Internet Protocol Security (IPsec) protocol.

Preferably the network interface device is configured to
verify the authentication key at a state machine or processor
of the network interface device.

Preferably, on selecting the particular configuration of the
set of functions defined in the configuration instructions, the
network interface device is configured to message its device
driver supported at a data processing system attached to the
network interface device to indicate that the function set of the
network interface device has changed.

Preferably the network interface device is configured to
accept the network message in a low power state. Preferably
the network interface device further comprises a management
controller operable to perform said verification of the con-
figuration instructions and cause the selection of the particu-
lar configuration of the set of functions defined in the con-
figuration instructions, the management controller being
active in the low power state.

Suitably the network interface device is attached to a data
processing system comprising a Baseboard Management
Controller and the network interface device is configured to
pass Intelligent Platform Management Interface messages
received at the network interface device to the Baseboard
Management Controller. On selecting the particular configu-
ration of the set of functions defined in the configuration
instructions, the network interface device may be configured
to message the Baseboard Management Controller to indicate
that the function set of the network interface device has
changed.

The network interface device may further comprise a non-
volatile memory and be configured to store the received con-
figuration instructions in said memory and at a later time to
perform the selection of the particular configuration of the set
of functions defined in the configuration instructions of the
network message at the instigation of a software entity sup-
ported at a data processing system attached to the network
interface device.

Suitably the network interface device is coupled to one or
more other devices each providing a set of functions in hard-
ware and each being operable to select a particular configu-
ration of their set of functions in accordance with configura-
tion instructions received at the network interface device, the
network interface device being configured to cause each of
the one or more other devices to select a particular configu-
ration of their set of functions in accordance with the con-
figuration instructions defined in the network message.

Preferably the network interface device is operable to suc-
cessfully verify at least two different authentication keys
including a first authentication key and a second authentica-
tion key, the second authentication key having a lower privi-
lege level than the first authentication key. Preferably the first
authentication key permits the network interface device to
configure any of the set of functions of the network interface
device and the second authentication key permits the network
interface device to configure a subset of the set of functions of

20

25

30

40

45

55

4

the network interface device. Preferably the first authentica-
tion key, on being successfully verified by the network inter-
face device, allows the network interface device to enable one
or more hardware functions; and the second authentication
key, on being successfully verified by the network interface
device, allows the network interface device to modify one or
more parameters of the hardware functions but does not allow
the network interface device to enable one or more hardware
functions.

Preferably the first authentication key is generated at a first
network entity holding a private key and the second authen-
tication key is generated at a second network entity holding a
cryptographic key generated using that private key. The first
network entity may be accessible to the network interface
device over the internet.

Preferably the second network entity is operable to trans-
mit a network message comprising configuration instructions
and the second authentication key to the network interface
device in accordance with the IPMI protocol. Preferably the
second network entity is on a network local to the network
interface device.

The network interface device may be one of a network
interface card, a switch or a router.

According to a second aspect of the present invention there
is provided a method for selecting a configuration of a set of
hardware functions of a network interface device, the method
comprising: receiving at a network interface device a network
message having one or more predetermined characteristics,
the network message comprising an authentication key and
configuration instructions defining a particular configuration
of a set of functions of the network interface device; in
response to receiving the network message, verifying the
authentication key at the network interface device; and if the
authentication key is successfully verified, selecting the par-
ticular configuration of the set of functions defined in the
configuration instructions of the network message.

According to a third aspect of the present invention there is
provided a network interface device and a baseboard man-
agement controller, the network interface device providing a
set of functions in hardware and being operable in first and
second modes: in a first mode, the network interface device
being configured to operate with a selected configuration of
the set of functions; and in a second mode, the network
interface device being operable to select a particular configu-
ration of the set of functions in accordance with configuration
instructions received at the network interface device; the net-
work interface device being configured to, on receiving a
network message having one or more predetermined charac-
teristics and comprising an authentication key and one or
more configuration instructions defining a particular configu-
ration of the set of functions, pass the configuration instruc-
tions and authentication key to the baseboard management
controller which: verifies the authentication key; and if the
authentication key is successfully verified, causes the net-
work interface device to select the particular configuration of
the set of functions defined in the configuration instructions
of the network message.

Preferably the network interface device is further config-
ured to pass Intelligent Platform Management Interface mes-
sages received at the network interface device to the Base-
board Management Controller.

According to a fourth aspect of the present invention there
is provided a system for selecting a configuration of hardware
functions of an electronic device, the system comprising:

an electronic device operable to select a configuration of'its
set of hardware functions; and a network interface device
coupled to the electronic device and operable to cause the

US 9,210,140 B2

5

selection of a particular configuration of the set of functions
of the electronic device in accordance with configuration
instructions received at the network interface device; wherein
the network interface device is configured to, on receiving a
network message having one or more predetermined charac-
teristics and comprising an authentication key and configu-
ration instructions defining a particular configuration of the
set of functions: verify the authentication key; and if the
authentication key is successfully verified, cause the selection
at the electronic device of the particular configuration of the
set of functions defined in the configuration instructions of
the network message.

Preferably the electronic device and the network interface
device are both supported at a data processing system. Suit-
ably the electronic device is a peripheral device of the data
processing system, such as a display adaptor or I/O controller.
Suitably the electronic device is a component of a data pro-
cessing system supporting the network interface device.

Preferably the network interface device is configured to
cause the selection at the electronic device of the particular
configuration of the set of functions defined in the configu-
ration instructions of the network message by storing the
configuration instructions at a non-volatile memory of the
network interface device optionally along with data indicat-
ing that the network interface device has configuration
instructions for the electronic device.

Suitably the selection at the electronic device of the set of
functions defined in the configuration instructions of the net-
work message is performed at the instigation of a software
entity supported at the data processing system attached to the
network interface device.

According to a fifth aspect of the present invention there is
provided a method for selecting a configuration of hardware
functions of an electronic device coupled to a network inter-
face device, the method comprising: receiving at a network
interface device a network message having one or more pre-
determined characteristics, the network message comprising
an authentication key and configuration instructions defining
aparticular configuration of a set of functions of an electronic
device coupled to the network interface device; in response to
receiving the network message, verifying the authentication
key at the network interface device; and if the authentication
key is successtully verified, causing the selection at the elec-
tronic device of the particular configuration of the set of
functions defined in the configuration instructions of the net-
work message.

According to a sixth aspect of the present invention there is
provided a method for conducting a transaction between a
vendor of a network interface device and a customer operat-
ing a data processing system supporting the network interface
device, the network interface device having one or more
functions which are disabled in hardware and comprising a
cryptographic key, the method comprising: the customer
acquiring from the vendor access to one of the said functions
and providing one or more identifiers of the network interface
device to the vendor; the vendor transmitting to the customer
a network message comprising an authentication key and
configuration instructions operable to cause the network
interface device to enable one or more of the disabled func-
tions of the network interface device; the customer allowing
the authentication key and configuration instructions to pass
to the network interface device over a network to which the
network interface device is attached; using the cryptographic
key, verifying the authentication key at the network interface
device; and if the authentication key is successfully verified,
causing the network interface device to enable the one or
more of the disabled functions of the network interface device

10

15

20

25

30

35

40

45

50

55

60

65

6

specified in the configuration instructions; wherein the
authentication key is selected by the vendor in dependence on
the identifier of the network interface device such that only
the said network interface device has the cryptographic key
operable to successfully verify the authentication key. The
transaction may be a financial transaction. The customer may
acquire access in return for monetary payment.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of
example with reference to the accompanying drawings, in
which:

FIG. 1 is a schematic drawing of a data processing system
supporting a network interface device configured in accor-
dance with the present invention.

FIG. 2 is a schematic drawing of a network interface device
configured in accordance with the present invention.

FIG. 3 is a schematic drawing of a network interface device
and trusted network entity configured in accordance with the
present invention.

FIG. 4 is a schematic drawing of a network interface
device, trusted network entity and intervening proxy network
entity configured in accordance with the present invention.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application. Various
modifications to the disclosed embodiments will be readily
apparent to those skilled in the art.

The general principles defined herein may be applied to
other embodiments and applications without departing from
the spirit and scope of the present invention. Thus, the present
invention is not intended to be limited to the embodiments
shown, but is to be accorded the widest scope consistent with
the principles and features disclosed herein.

The present invention is directed to a network interface
device which has the ability to modify the set of functions it,
or another device to which the network interface is coupled,
can perform in response to receiving configuration instruc-
tions over the network to which it is connected. In particular,
the present invention is directed to selectively enabling addi-
tional functions in devices (including network interface
devices) which are capable of performing those additional
functions but which have been shipped with those additional
functions disabled. The network interface device is config-
ured to verify the configuration instructions it receives by
means of an authentication key included in the instructions.
This allows the network interface device to be sure that the
instructions originate from a trusted entity (such as a device
vendor or administration server).

A schematic drawing of a system configured in accordance
with the present invention is shown in FIG. 1. In the figure,
network interface card or device (NIC) 102 provides an inter-
face between network 105 and data processing system 101.
Typically, NIC 102 communicates with the data processing
system over bus 110 (such as a PCI, PCI-X or PCI-E bus) and
is connected to the network by data link 106 (such as an
Ethernet connection). The data processing system could sup-
port one or more peripheral devices 103 and 104, typically
also via communication buses 111. Generally, a data process-
ing system will include a processor 107, memory 108 and
other devices 109 integral to the data processing system, such
as onboard data controllers, graphics subsystems and audio
subsystems.

US 9,210,140 B2

7

In a first embodiment of the present invention, network
interface device 102 is operable to select the set of functions
it provides in hardware in accordance with instructions
received over the network. A schematic diagram of network
interface device 102 is shown in FIG. 2. NIC 102 includes a
processor 205, memory 208 and receive circuitry 206,
although these components need not be distinct and could be
combined in a single integrated circuit. The connections
between the components shown in FIG. 2 are illustrative only;
the components of NIC 102 may be connected in any suitable
arrangement.

The relationship between a network interface device 102
and trusted instructing entity 301 is illustrated in FIG. 3. NIC
102 is connected over network 105 to trusted entity 301.
Trusted instructing entity 301 is configured to send configu-
ration instructions to NIC 102 in accordance with the method
described below. The NIC is only responsive to instructions
received from trusted instructing entity 301 and will not pro-
cess instructions received from untrusted entity 303. NIC 102
is configured to ignore any configuration instructions
received from an untrusted entity, such as entity 303, because
untrusted entity 303 cannot provide the necessary authenti-
cation key to NIC 102.

Trusted instructing entity 301 may be any kind of server,
switch or embedded control processor (to name a few of the
many possibilities). Specifically, the entity can be a program
executing on such hardware. In certain situations (such as
when the trusted instructing entity and target device are sepa-
rated by a firewall), the trusted instructing entity may have a
proxy entity accessible to the target device (e.g. behind the
firewall) which mirrors the behaviour of the trusted instruct-
ing entity or relays messages from the trusted instructing
entity onto the target device. This is discussed further below
in relation to FIG. 4.

In a preferred embodiment, configuration instructions are
communicated to the NIC in accordance with a predeter-
mined protocol defining the format of the data exchanged
between the NIC and the trusted instructing entity, and other
parameters of the communication, such as the steps of a
handshake used to establish communications. It is advanta-
geous if the protocol used is a challenge-response protocol
employing cryptographic authentication, such as Transport
Layer Security (TLS) or Internet Protocol Security (IPsec)
protocol (with the communication being secured at the trans-
port and internet layers, respectively). However, less secure
methods could be used, such as a simple secret password-
based authentication method.

In order for the NIC to be able to distinguish configuration
data received from a trusted entity from the general stream of
data passing over data link 106, the configuration data is of a
predetermined form and/or includes one or more identifiers.
The receive circuitry 206 of NIC 102 is configured to detect
when configuration data is received from a network entity and
to cause the NIC to process the configuration data in accor-
dance with the methods described herein. Configuration data
may be identified by the receive circuitry on the basis of any
suitable distinguishing characteristics, including one or more
of:

1. the protocol used;

2. the structure or type of the configuration data;

3. the port number or other end-point reference to which
the configuration data is directed;

4. for packet based data, one or more flags or other identi-
fiers included in the headers of the packets in which the
configuration data is carried.

Most preferably, NIC 102 is configured to receive internet
protocol (IP) data packets and the configuration data com-

25

40

45

60

65

8

prises one or more [P data packets that include an identifier in
their header to indicate to receive circuitry 206 that those data
packets carry configuration data. However, in the case that the
configuration instructions are received from a proxy or a
server located on the local network, the packets can be Eth-
ernet packets or an extension to a management protocol such
as IPMI. This is discussed further below.

Configuration data comprises all of the data received from
a trusted entity at a NIC which relates to the provision of
configuration instructions to the NIC. In the preferred
embodiment the configuration data therefore includes the
messaging and preamble associated with establishing a con-
nection between the NIC and trusted entity in accordance
with the predetermined protocol and, if the connection is
successfully established, the configuration instructions them-
selves.

NIC 102 is configured to only carry out those configuration
instructions which can be authenticated as being received
from a trusted entity. It is greatly preferable if this is the only
way in which the hardware function set of the NIC can be
modified. The configuration data therefore includes (at some
point in the communications between the NIC and trusted
entity) an authentication key from the entity sending the
configuration instructions to indicate to the NIC that the
entity is indeed trusted entity 301. The authentication key
could be a password, a security certificate, a pseudorandom
number (for which the NIC understands the generator
sequence) or a hash of a set of predetermined data (such as a
secret word known to the NIC, a timecode, an identifier of the
trusted entity, etc.). In the case in which the configuration
instructions are encrypted, the authentication key can be the
encrypted instructions themselves, with the authentication
key being successfully verified if the instructions are success-
fully decrypted. The instructions preferably include a verifi-
able checksum or hash so that the network interface device
can determine whether the configuration instructions have
been successfully decrypted.

It is further preferable that communications between the
NIC are established over a secure channel. For typical packet-
based data streams, this has the advantage that man-in-the-
middle attacks are much more difficult because the NIC can
be sure that all of the packets came from the same entity.
Authentication, verification and decryption/encryption func-
tions can be performed at a state machine or processor located
at the network interface device.

In the preferred embodiment, the trusted entity holds a
private key and the NIC holds a public key, the two keys
together belonging to a cryptographic pair. The keys can be
used to establish a secure communication channel between
the NIC and trusted entity and to encrypt data communicated
over that channel. Suitable protocols are known in the art (e.g.
TLS and IPsec). The preferred embodiment is based on the
principle that the trusted entity keeps the private key secret
and therefore any authentication keys generated by that key or
any data encrypted using that key must have originated at the
trusted entity. The public key of the pair which is stored at the
NIC can be used to verify an authentication key generated
using the private key or decrypt data encrypted by the private
key (or a derivative thereof). Thus, the NIC can be sure that
the configuration instructions originated at the trusted entity
and the trusted entity can be sure that only the intended NIC
with the correct public key can use the configuration instruc-
tions.

Alternatively, the private key could be stored at the NIC
and the public key stored at the trusted entity but this is not
preferred because a typical vendor will ship their NICs to
customers all over the world, giving malicious parties the

US 9,210,140 B2

9

opportunity to examine a NIC and potentially (although
unlikely) to extract its key. Furthermore, having the public
key at the NIC allows there to be fewer private keys (perhaps
only one) than there are public keys, with each public key
being able to decrypt data encrypted by the group of private
keys or their derivatives. Thus the private key(s) must be
physically secure. This architecture makes it very difficult for
aparty to modity the function set of a single NIC, and almost
impossible to modify the function set of many NICs (as would
be present in a corporate network).

On initiation of a secure channel between the NIC and the
trusted entity, the trusted entity transmits a message to NIC
102 indicating that it wants to send configuration instructions
to the NIC. It can be advantageous if the NIC can decline the
request. This can be useful in cases in which the NIC is
supporting other communication channels and would be
required to drop those channels in order to process the con-
figuration instructions, or the NIC could be configured to
decline requests which are sent between predetermined hours
or on predetermined days. If the NIC accepts the request, the
NIC and trusted entity may optionally establish a secure
encrypted connection between themselves (preferably
secured using the private key held at the trusted entity and the
public key held at the NIC). Alternatively, the trusted entity
can transmit the configuration instructions to a proxy entity
local to the network interface device according to this scheme
and the proxy can then appropriately schedule the application
of'the configuration update. It is advantageous if the proxy has
its own cryptographic key with which it can verify configu-
ration instructions received from the trusted entity/set up a
secure connection between the trusted and proxy entities.
This cryptographic key may be generated by the trusted entity
in the manner described below.

Once a connection is established with the target NIC or
proxy, the trusted entity transmits the configuration instruc-
tions to the NIC/proxy entity (as appropriate), preferably in
encrypted form. If the proxy receives the configuration
instructions and authentication key, it may store them for later
application to the NIC as part of a scheduled update. Once the
NIC receives the configuration instructions and authentica-
tion key (possibly via the proxy), the NIC verifies the authen-
tication key and updates its function set in accordance with
the configuration instructions. Following the updating of the
NIC’s function set, a message may be transmitted to the
trusted entity to indicate that the configuration instructions
were successfully applied.

The NIC may optionally include a Trusted Platform Mod-
ule (TPM) 207 in accordance with the specification published
by the Trusted Computing Group (TCG). The TPM could be
used to store the public key assigned to the NIC. Alternatively,
a TPM could be present in data processing system 101, with
the NIC being capable of querying the system TPM in order
to use the stored public key.

Instead of storing an additional public key at TPM 207, the
endorsement key of the TPM could be used to authenticate the
identity of the NIC in accordance with the TCG specification
and additional information could be stored in the TPM
memory to allow the NIC to authenticate the identity of the
trusted entity. The information could include a hash derived
from the cryptographic key held by the trusted entity, param-
eters for generating a pseudorandom number sequence used
by the trusted entity, etc. The trusted entity could provide a
security certificate issued by a certificate authority to authen-
ticate its identity, as is well known in the art.

In alternative simplified embodiments, the trusted entity
transmits configuration instructions along with an authenti-
cation key to the NIC without first establishing a connection

10

15

20

25

30

35

40

45

50

55

60

65

10

between the two. The authentication key can be a crypto-
graphic hash or digital certificate (or in any other form
described in the embodiments above) which is generated
using a private key held at the trusted entity, with the NIC
having a public key which is used to validate the authentica-
tion key. In addition, or alternatively, the configuration
instructions could be encrypted at the trusted entity using its
private key, with the public key at the NIC being used to
decrypt (and therefore also validate) the configuration
instructions. In such embodiments it is advantageous if the
NIC indicates to the trusted entity whether it will accept the
instructions and/or whether the instructions have been suc-
cessfully applied. The same considerations apply with regard
to the detection of configuration data at the receive circuitry
of the NIC.

On receiving a set of valid configuration instructions from
a trusted entity whose identity has been validated, the NIC
performs the instructions of the set or writes the instructions
to a memory (preferably to the non-volatile memory of the
NIC 208 or a memory of the data processing system 108) for
the instructions to be later applied by the NIC or a software,
firmware or hardware entity of data processing system 101.
Preferably, the NIC stores the received configuration instruc-
tions in its non-volatile state memory 208 and then enters a
configuration mode in which the NIC can safely apply the
configuration instructions.

NIC 102 provides a set of functions defined in hardware
and/or firmware (such as data throughput, half or full-duplex
operation, Wake-on-LAN functionality, etc.), one or more of
which can be enabled or disabled by the NIC. The functions of
the NIC can be enabled or disabled by one or more of: chang-
ing the state of one or more hardware switches, modifying
entries in a hardware register or function table defining the
functions the NIC can perform, and updating firmware stored
at the NIC. In this manner the set of functions provided at the
NIC can be modified.

In a simple example, one or more hardware switches could
be used to switch on and off portions of circuitry which
provide additional functions at the NIC: if the circuitry is
switched on, the additional functions are enabled; if the cir-
cuitry is switched off, the functions are disabled. In a second
example, one or more switches are used to select between
different modes or clock speeds. In a third example, the values
written to a hardware register determine the set of functions
active at the NIC: on boot-up the hardware consults the entries
in the register and operates with the function set indicated
therein.

The present invention provides a secure method by which
the function set of a network interface device can be remotely
selected. This method addresses the problems identified in the
prior art and has several useful applications.

The function set of the NIC can comprise any number of
different functions, including:

1. The virtual network interfaces presented by the NIC—in
particular, the PCle physical functions, IOV virtual functions
and parameters such as the degree of Receive Side Scaling
(RSS). The function set of the NIC could include the param-
eters of any of these interfaces, allowing the configuration of
the interfaces presented by the NIC to be configured in accor-
dance with the mechanisms of the present invention.

2. Quality of Service (QoS) functions—in particular, traffic
shaping algorithms, peak and reserved bandwidths, and
parameters described which data streams or types are to be
given priority,

3. The network parameters of the NIC, such as IP address
and maximum transmission unit (MTU) size, virtual LAN
(VLAN) identifiers.

US 9,210,140 B2

11

4. Network state associations: for example, it is advanta-
geous if the NIC can store the state for the connections of a
particular guest operating system in a virtualised system such
that if the guest OS migrates between servers the state can be
transferred to the NIC of that server.

In a first example, trusted entity 301 is operated by the
vendor of NIC 201 so as to allow remote unlocking of func-
tions which are disabled in hardware at the NIC. The public
key is written to the NIC by the vendor during manufacture of
the NIC, with the vendor holding the private key of the cryp-
tographic pair. Preferably the public key is written to “tamper-
proof” write-once memory. If the vendor of the NIC is the
trusted entity, the vendor can arrange that the NIC does not
carry out configuration instructions unless they are verified as
originating from the vendor (the carrier of the private key).
This is beneficial for both vendor and end-user: because only
the vendor can modify the set of functions which the NIC is
enabled to perform, the vendor can charge for enabling addi-
tional functions ofthe NIC (by way of a financial transaction),
and the end-user can be confident that the NIC is secure from
attempts by untrusted third parties to modify the function set
of the NIC.

In a second example, a NIC allows a public key to be
written to it so as to allow the party writing the key to remotely
manage the functions set accessible at the NIC. Thus a system
administrator holding the private key of the pair could
securely manage a group of computers having NICs config-
ured in accordance with the present invention and loaded with
apredetermined public key. This allows a system administra-
tor to remotely control the set of functions provided in hard-
ware at each NIC on the administrator’s network.

A network interface device as described above can be
further configured to set the function set of another device
which is enabled to receive configuration instructions. The
other device may be any device local to NIC 102, such as an
onboard I/O controller 109 supported at data processing sys-
tem 101, the data processing system 101 itself, or a peripheral
device 103 or 104. The NIC may be coupled to the device via
a data bus of the data processing system or any kind of direct
interconnect. NIC 102 receives configuration instructions
from a trusted entity according to the method described
herein and is configured to cause those configuration instruc-
tions to be applied to another device operable to use them. A
NIC configured to apply configuration instructions to another
device need not be operable to modify its own function set in
accordance with received configuration instructions.

Optionally, instead of using the public key stored at the
NIC, the NIC can use a public key stored at the target device
to which the configuration instructions are directed to secure
communications between the trusted entity and the NIC.
However, it is preferable that the NIC uses its public key to
secure communications between it and the trusted entity, and
the target device or a software entity at data processing system
101 then performs decryption or validation of the received
configuration instructions before modifying the function set
of the target device.

A NIC operable to cause the function set of another device
to be updated must know to which device a set of received
configuration instructions are targeted. This may be indicated
to the NIC in the configuration data transmitted to it from a
trusted entity. For example, on establishing a secure connec-
tion to the NIC, the trusted entity could signal to the NIC
which device of the system the trusted entity wishes to update.
This allows the NIC to optionally check for the presence of
the device and query the device in order to determine whether
the target device can receive the configuration instructions at
that time. Alternatively, the configuration instructions them-

10

15

20

25

30

35

40

45

50

55

60

65

12

selves can indicate the device to which they are directed.
Preferably the NIC stores the identity of each of the devices in
the local system which are operable to have their function set
updated in accordance with the present invention. The device
identities may be entered by the manufacturer or system
administrator on installing the NIC in the local system.

On receiving a set of configuration instructions for another
device, the NIC can be configured to handle the instructions in
one of two ways (the NIC may have the ability to perform
only one of the two options or it may be able to use either
option in dependence on whether or not the NIC can directly
address the target device). As a first option, the NIC transmits
the configuration instructions to the target device and the
target device updates its function set accordingly. As a second
option, the NIC stores the configuration instructions for the
other device in its memory 208 or in a memory 108 of the data
processing system to which it is attached. This allows the NIC
to apply configuration instructions to devices which it cannot
access without cooperation from data processing system 101
(for example, devices on other buses), or to devices which are
not switched on or connected to the NIC/data processing
system at the time the configuration instructions are received
(such as wireless printers or external storage).

In support of the second option, the NIC may receive the
configuration instructions when the data processing system is
in a low power state (e.g. switched off or in standby or hiber-
nation mode) and therefore in some circumstances cannot
communicate with the target device of the system. However,
whether the first or second option is adopted, this problem can
be solved by either allowing the NIC to wake the target device
or an intervening data bus, or causing the configuration
instructions to be processed the next time the system as a
whole enters a higher power state when the target device is
accessible.

Generally, the NIC can either (a) apply the configuration
instructions to a target device itself, or (b) cause the data
processing system or a software entity supported at the data
processing system to apply the configuration instructions to a
target device. Note that the NIC may be a peripheral device in
the target system or the NIC could be supported at the main-
board of the system.

As described above, the application of configuration
instructions to a device configured in accordance with the
present invention comprises enabling or disabling hardware
functionality and/or firmware functions by one or more of:

1. setting one or more hardware switches;

2. writing to a hardware register or configuration table;

3. writing a new firmware to the device.

Configuration instructions stored at a memory of the NIC
or data processing system could be applied to the target
device in several ways. An application, component of the
operating system, or firmware stored at the data processing
system (such as the BIOS) could pick up the stored configu-
ration instructions and apply them to the target device (which
could be the NIC) at a suitable time. For example, this could
occur during boot-up of the data processing system or at the
initiation of a system administrator (perhaps from a remote
computer). Preferably the NIC can indicate to the data pro-
cessing system that configuration instructions have been
received so as to alert the appropriate functionality of the
operating system, an application or the BIOS that a set of
configuration instructions are ready to be applied. This could
be by means of a flag or other identifier set at the NIC, or the
presence of the configuration instructions in memory could
itself be sufficient.

In order to apply received configuration instructions, the
NIC or other target device may be required to enter a con-

US 9,210,140 B2

13

figuration mode in which the NIC or other target device can
safely update its function set. In such a configuration mode,
the NIC/other device may be unresponsive to all communi-
cations and stop performing its normal functions. This allows
the NIC/device minimise the risk of rendering itself inoper-
able as aresult of enabling or disabling functions in hardware,
updating its firmware etc.

The network interface device 102 has been described
above as an interface card for a data processing system 101,
such as a desktop, laptop computer or server. However, net-
work interface device 102 could be any kind of network
interface configured in accordance with the present invention
and could be a communication interface of, for example, a
switch, a router, a printer, a handheld multimedia device or a
portable telephone. NIC 102 could be a wired or wireless
network interface.

In order to deal with the situation in which the data pro-
cessing system supporting the target NIC is in a low power
state, it is advantageous for the data processing system and
NIC to support at least some of the operations of the present
invention in the low power state. Most preferably the NIC is
configured to be operable to receive configuration instruc-
tions in a low power state and this is the preferred mode in
which configuration instructions are received and applied in a
system configured in accordance with the present invention.
This allows configuration changes to be effected when the
target system is not being used, or at a time selected by the
system administrator. Alternatively, the trusted entity can
transmit management or Wake-on-LAN packets to the target
system so as to cause the target system to at least raise its
power state (or that of a target device) such that the configu-
ration instructions can be received and applied. This may be
required in certain circumstances—for example, if configu-
ration instructions are received for a device which is powered
down.

For example, a target system supporting a NIC in accor-
dance with the present invention might include a low power
management subsystem that is active in the low power state.
Typically such a system would include a Baseboard Manage-
ment Controller (BMC) 112, with the NIC being configured
to filter incoming data packets and deliver those packets rec-
ognized as carrying instructions for the BMC to the BMC.
Typically, these will be packets of the Intelligent Platform
Management Interface (IPMI) and the NIC will pass them to
BMC 112 using the Network Controller Sideband Interface
(NC-SI). The filtering and delivery of such packets does not
involve the CPU or main I/O bus of the data processing and is
confined to the low power management subsystem and NIC.

In an embodiment of the present invention, the NIC is
configured to support additional management packets to the
set of packets of a management protocol (such as IPMI pack-
ets) supported by the system. This is preferably implemented
at the NIC by configuring an extended set of filters at receive
circuitry 206 to trap the additional management packets (as
well as the regular packets of the management protocol), even
when the data processing system and network interface
device are in a low power state. The management packets are
passed by the NIC to the management controller of the system
(the BMC) and either the NIC or the BMC can be configured
to handle the verification and configuration steps of the
present invention.

If the NIC is configured to handle packets carrying con-
figuration instructions and the necessary authentication keys,
this is preferably performed at its own internal management
controller (MC) 209. Thus, the present invention can utilise a
sideband management subsystem to allow configuration

10

15

20

25

30

35

40

45

50

55

60

65

14

instructions to be transmitted to the target system when the
target system is in a low power state.

Alternatively, the management circuitry (BMC) of the sys-
tem is configured to perform the authentication and process-
ing of the configuration instructions, with the command set
recognised by the BMC being extended to include the com-
mands carried in the additional management packets. The
authentication of received authentication keys may be per-
formed with the support of a Trusted Platform Module of the
data processing system, as discussed above. The NIC need
only perform the filtering (interception) of packets directed to
the BMC (which includes packets carrying configuration
instructions) and pass those packets (or their contents) onto
the BMC which performs all other aspects of the present
invention (such as verification etc.). The BMC is configured
to cause successfully verified configuration instructions to be
applied to the network interface device—in other words, the
network interface device is operable to receive configuration
instructions from the BMC and configure itself in accordance
with those instructions. In this particular embodiment, the
BMC can store a cryptographic key for one or more devices of
the system and the BMC is able to effect the modification of
hardware functionality at one or more devices of the system.

At its most straightforward, the present invention could
operate with a basic Wake on LAN (WoL) architecture, with
the trusted entity transmitting a WolL “magic packet” to the
NIC prior to sending configuration instructions. If the NIC is
in a low power state, the magic packet triggers the NIC to
wake the I/O bus and main processor of the target system 101.

It is advantageous for the trusted entity to be configured to
query the target system in order to determine whether it is in
a low power state. If the target system is found to be in a low
power state the trusted entity can message the BMC/send a
magic packet (as appropriate) in order to move the target
system to the required power state in which configuration
instructions can be applied.

Since the trusted entity may be outside the network that
includes the target NIC, accessible only via the internet, the
administrator of the network that includes the target NIC may
be required to configure a virtual private network (VPN)
between the trusted entity and the target NIC so as to allow the
management messages/magic packet to reach the NIC. Alter-
natively, and as mentioned above, there may instead be a
proxy server or program running on a server local to the target
machine which connects to the trusted entity (preferably
securely, such as over an SSL encrypted connection).

The use of a proxy is shown in FIG. 4. Proxy trusted entity
402 is accessible to NIC 102 over local network 401 (which
could be a corporate network). Proxy trusted entity 402 is also
accessible to trusted entity 301 over non-local network 105
(which could be the internet). The proxy entity is operable to
receive configuration instructions for the target NIC 102 from
trusted entity 301 in accordance with any of the authentica-
tion/encryption methods described above. In turn, target NIC
102 is operable to receive those configuration instructions
from the proxy. Since the proxy is local to NIC 102, it can
transmit management packets to the NIC, which allows (in
accordance with the preferred embodiment) the configuration
instructions to be transmitted to the NIC in one or more
management packets. As discussed above, the management
packets are preferably defined in an extension of a known
management protocol (such as IPMI) utilised at the target
system.

Trusted entity 301 and proxy trusted entity 402 preferably
include cryptographic keys 405 and 404, respectively. Cryp-
tographic key 405 is used to authenticate configuration
instructions sent proxy the trusted entity. Cryptographic key

US 9,210,140 B2

15

404 is used to authenticate the proxy to NIC 102 and can also
be used to authenticate configuration instructions which
originate at the proxy (for example, instructions which are
used to configure the NIC but do not modify the hardware
functions of the NIC). In the case in which configuration
instructions originate from proxy entity 402, the proxy is a
trusted entity in its own right, although typically of a lower
privilege level, and the proxy uses its cryptographic key to
generate the authentication keys it provides with its configu-
ration instructions.

In the preferred embodiment, cryptographic keys 404 and
405 are both generated from a private key held by the trusted
entity, and NIC 102 may include one or more public keys
which correspond to the authentication keys sent by the
trusted/proxy entities. However, various other arrangements
are envisaged and will be apparent to a person of skill in the
art.

It is further preferred that trusted entity 301 can determine
the privilege level of other network entities. For example, the
trusted entity can be configured to generate an authentication
or public key for another entity (such as a proxy entity or
management server local to the target NIC) which gives the
holder of that key configuration rights up to a particular
privilege level. Thus, configuration instructions sent along
with that authentication key (or an authentication key gener-
ated using the public key) may only configure those prede-
termined functions over which that privilege level has control.
Functions which are only configurable by network entities
having a higher privilege level cannot be modified by the
network entities having a lower privilege level. An authenti-
cation key may indicate to a target NIC that the originating
network entity has a particular privilege level by one of sev-
eral mechanisms, including:

i. the authentication key corresponds to a public key stored
at the NIC having a predetermined privilege level;

ii. the authentication key includes a privilege level indica-
tor signed by the trusted entity which indicates the privilege
level of the holder of that authentication key.

There are advantages to using a proxy server in order to
mediate the transaction between the trusted entity and the
target machine. In particular, the use of a proxy allows con-
figuration instructions to be delivered to the target machine
asynchronously (i.e. the target machine does notrequire a live
connection to the trusted entity). For example, the proxy can
connect to the trusted entity in order to download the configu-
ration instructions for one or more target devices on the net-
work and then store those devices until a later time, such as
during an update cycle or overnight when the target machines
are in a low power state. In alternative embodiments, the
proxy could allow the configuration instructions to be written
to a bootable disc or portable drive, such as a USB memory
stick, which can be used to supply the configuration instruc-
tions to the target machine. The configuration instructions can
be delivered to the proxy as a message having, very generally,
the form:

private-key-encrypt {machine with serial number in range

[X-Y], add NIC capability [Z]}

A first exemplary application of the present invention will
now be described. NIC 102 is a gigabit Ethernet device
capable of operating at 1 Gbps or 10 Gbps and which ofthese
two functions the NIC is configured to perform may be
selected in hardware. In accordance with the present inven-
tion, a public cryptographic key is written to the NIC by the
vendor during manufacture and the choice of either 1 Gbps or
10 Gbps functionality is selected. Only the vendor can set the
functions of the NIC in hardware. The private key of the
cryptographic pair is held by the vendor.

5

10

15

20

25

30

35

40

45

55

60

65

16

A customer purchases the 1 Gbps version of the NIC,
which is sold at a lower price than the 10 Gbps version.
However, at a later time, the customer wants to upgrade their
NIC to support the 10 Gbps function. Conventionally, such an
upgrade would require the customer to purchase a new NIC,
or return the NIC to the vendor to allow the 10 Gbps function
to be selected in hardware. The present invention allows the
vendor to remotely select the function set offered by the NIC.
In order to receive the upgrade, the customer contacts the
vendor, pays an upgrade fee and provides sufficient informa-
tion for the trusted entity provided by the vendor to address
the NIC over the relevant networks (which may include the
Internet). The trusted entity of the vendor then, in accordance
with the teaching described herein, transmits the appropriate
configuration instructions to the NIC so as to cause the NIC to
enable the 10 Gbps function.

A second exemplary application of the present invention
will now be described. Consider a data processing system
supporting a display device 103 and network interface device
102 both configured in accordance with the present invention.
Display device 102 comprises a 3-D graphics processor hav-
ing 64 texture units and supporting a maximum clock speed of
750 MHz. However, these functions of the graphics processor
can be configured at a hardware register of the display device,
with the number of texture units being selectable between 16,
32 and 64, and the clock speed being selectable between 450,
650 and 750 MHz. The firmware of the display device may be
updated to reflect the enabled functions of the device.

When the end-user of the data processing system support-
ing the display device purchased the system, they only paid
for a display device having 32 texture units enabled and a 650
MHz clock speed. At some later date the end-user wishes to
pay to enable the full functionality of the display device so as
to allow the system to support the latest videogames. Because
the data processing system includes a NIC configured in
accordance with the present invention, the end-user can pur-
chase the additional functionality from the appropriate ven-
dor and have the new function set applied remotely to their
display device by means of the NIC.

A third exemplary application of the present invention will
now be described. During assembly of a data processing
system 101 such as a desktop computer, laptop computer, or
server, a network interface device 102 configured in accor-
dance with the present invention is installed in the data pro-
cessing system. One or more of the other devices present in
the data processing system (such as graphics cards, [/O con-
trollers etc.) are operable to have their function sets updated
according to the method described above. Thus, the data
processing system comprises one or more devices (this may
or may not include the NIC itself) whose function sets may be
determined in hardware and/or firmware and a NIC 102 oper-
able to configure those function sets by means of communi-
cation over a network with a trusted entity.

Conventionally, a data processing system is assembled
from a selection of pre-configured hardware devices which
match the specification ordered by the customer. Thus, each
of the hardware devices is pre-loaded with the appropriate
firmware and the hardware functions provided by each device
are either non-configurable or preset by the manufacturer of
each device. The manufacturer of the data processing system
must therefore keep stocks of all of the devices in all of the
configurations offered to their customers. This can be ineffi-
cient when different versions of the same product differ only
in the set of functions which are enabled in hardware. Fur-
thermore, even in cases in which the manufacturer of the data
processing system can enable or disable hardware functions
and update the firmware of the devices of the system, con-

US 9,210,140 B2

17

ventional methods for performing these tasks require special-
ist tools and must be performed on a device-by-device basis.

The present invention provides a convenient method by
which the manufacturer of a data processing system can
quickly and easily enable or disable hardware functions and
update the firmware of the devices of a newly-built system
using the configuration functionality of NIC 102. Once the
data processing system has been assembled, the manufacturer
can connect the NIC to a trusted entity (this could be by means
of a simple Ethernet patch cable) and the configuration
instructions for all of the devices of the system which are
enabled to receive configuration instructions (and which
require configuring) can be downloaded to the NIC. The
configuration instructions are then be applied to each of the
respective devices in accordance with the teachings described
herein. This allows the function sets of the devices in the
system to be configured to match the specification ordered by
the customer:

This is best illustrated by way of an example. Consider
customers X and Y who each purchase a data processing
system having identical hardware but customer Y pays a
premium over customer X for additional functions to be
enabled in the hardware of their data processing system.
Customer X receives a system having a graphics processor
which has only 32 texture units enabled and an Ethernet NIC
supporting 1 Gbps throughput. CustomerY receives a system
having a graphics processor which has all 64 texture units
present in the hardware enabled and an Ethernet NIC support-
ing 10 Gbps throughput. The firmware of the graphics and
network card devices in customer Y’s data processing system
are also updated to support the additional functions.

It is advantageous for a device configured in accordance
with the present invention to store multiple public keys. For
example:

1. The device manufacturer’s public key;

2. The public key of the OEM that built the system com-

prising the device;

3. The public key of the customer.

Each type (1 to 3) of public key may correspond to a
different level of authority and hence a different set of device
capabilities which can be modified. For instance, providing a
pair to the key at the device manufacturer’s level would allow
access to all configurable functions of the device, whereas
providing a pair to the key at the OEM level would allow
access to a subset of those functions over which the OEM has
been given control (perhaps by means of a licensing agree-
ment between the device manufacturer and the OEM). Pro-
viding a pair to the key at the customer level would yield the
least control over the functions of the device—this can pro-
vide a mechanism by which the device can be configured by
the customer, or perhaps the customer is permitted to disable,
but not enable, functions in hardware. Accordingly, the
“trusted entity” referred to herein can be a machine of the
device manufacturer, OEM or customer, as appropriate to the
situation.

A fourth exemplary application of the present invention
will now be described. Consider a NIC at a data processing
system on a corporate network which also includes a trusted
entity which may or may not be able to act as a proxy for a
trusted entity operated by a device manufacturer/OEM exter-
nal to the corporate network. The trusted entity may not be
local to the data processing system—for example, the corpo-
rate network could be split across several sites. The NIC has
stored a public key for the corporation which corresponds to
a private key stored at the trusted entity. The data processing
system is virtualised with several guest operating systems

10

15

20

25

30

35

40

45

50

55

60

65

18

running on the system atop a hypervisor. The NIC supports a
virtual NIC for each of the guest operating systems.

Now suppose the administrator of the system (which is, for
example, a server in a datacenter) wishes to create a new
virtual NIC (VNIC) for a new guest operating system which
has been created on said data processing system. The system
administrator causes the trusted entity to transmit configura-
tion instructions to the NIC of the target system which instruct
the NIC to create the new VNIC. The NIC can then transmit
an event to its device driver so as to cause the hypervisor to
pick up the new VNIC and map it into the new guest operating
system (the hypervisor can be messaged by conventional
means in order to configure the new guest operating system
and instruct the hypervisor to correctly map the new VNIC).
In this manner, the present invention can be used to securely
and remotely configure a NIC at a low level.

In preferred embodiments of the invention, the network
interface device or other electronic device (such as a periph-
eral device for a computer system) is shipped by the manu-
facturer with some of the set of functions of the device dis-
abled such that the disabled functions are not available foruse
at the device. The device is capable of performing the dis-
abled functions (i.e. it includes the necessary hardware and
optionally the necessary firmware/software) but those func-
tions are disabled by the vendor of the device such that the
functions cannot be enabled unless a valid authentication key
is received by the device. Thus, a disabled function is a
function that the hardware of the device is capable of per-
forming but that is not available for use at the device whilst the
function is disabled. In some embodiments it might be nec-
essary to update the firmware/software of the device to sup-
port a particular function when that function is enabled at the
device by means of the method of the present invention.

Furthermore, in preferred embodiments of the invention,
the information necessary to verify an authentication key
received at the device is stored integral to the device during
manufacture, or at least prior to sale of the device. The infor-
mation could be stored at a trusted platform module (TPM) of
the device. Most preferably the cryptographic information
required to verify configuration instructions received at the
device is stored at the device in such a way that it cannot be
edited or overwritten (e.g. the cryptographic information is
stored in a “write-once” memory), or the cryptographic infor-
mation is stored in a tamper-proof memory such that any
attempts to perform one or more of (a) editing, (b) over-
writing or (c) directly reading the cryptographic information
prevent the device from enabling any disabled functions (or
alternatively, the device could render itself inoperable until
“unlocked” by the vendor). In this manner, the vendor can
ensure that only they can enable those functions of the device
that are disabled when the product is sold, allowing the ven-
dor to charge for enabling those additional functions.

Thus, in preferred embodiments of the present invention a
network interface device includes one or more functions dis-
abled in hardware in a second mode, the network interface
device being operable to enable disabled functions in accor-
dance with configuration instructions received at the network
interface device, and the network interface device being con-
figured to, on receiving a network message comprising an
authentication key and configuration instructions defining
one or more hardware functions of the network interface
device that are to be enabled, verify the authentication key as
being valid by means of cryptographic information stored at
the network interface device and, if the authentication key is
successfully verified, enable the one or more functions
defined in the configuration instructions of the network mes-
sage. The network message is received over a network to

US 9,210,140 B2

19

which the network interface device provides an interface. The
cryptographic information is preferably stored at the network
interface device during manufacture and could be a crypto-
graphic key or other data by means of which an authentication
key can be verified as being valid—i.e. as being from a trusted
source allowed to enable disabled functions of the network
interface device.

A network interface device (NIC) configured in accor-
dance with the present invention could be operable to enable
one or more of the following functions that are disabled
during manufacture:

a) Increased link speed. Such a device may be shipped in a
default state in which the maximum link speed of the device
is limited to a first speed (e.g. 10 Gbps) but the hardware of the
device can in fact support a greater second link speed (e.g. 40
Gbps)—in other words, the greater second link speed is dis-
abled at the device. On enabling the greater second link speed
function, the maximum link speed at which the device can
operate increases up to the second link speed.

b) Full duplex operation. Such a device may be shipped in
a default state in which the device supports only half-duplex
communications over its physical ports. On enabling the
device’s full duplex function, the device supports full-duplex
communications over its physical ports.

¢) Hardware support for an increased number of virtualised
NICs. Such a device may be shipped in a default state in
which the number of VNICs the device can support is limited
at the device—in other words, some of the potential VNICs
(or the physical resources associated with those VNICs) of
the PCle device are disabled.

d) Hardware support for an increased number of PCle
physical or virtual functions. Such a device may be shipped in
a default state in which the number of PCle physical and/or
virtual functions of a PCle NIC is limited at the device—in
other words, some of the potential physical and/or virtual
functions (or the physical resources associated with those
functions) of the PCle device are disabled. On enabling addi-
tional PCle physical and/or virtual functions, the device
makes additional PCle physical and/or virtual functions
available for use.

e) A TCP Offload Engine (TOE). Such a device may be
shipped in a default state in which the TCP Offload Engine is
disabled such that the device does not support TCP offload
processing at the device, although it includes the hardware
necessary to perform such processing.

On enabling the TCP Offload Engine, the device supports
TCP offload processing and is operable to perform such pro-
cessing.

) Additional physical ports. Such a device may be shipped
in a default state in which only a subset of the total number of
the physical ports of the device are enabled, with the remain-
ing number being disabled. On enabling one or more of the
disabled ports, the newly-enabled ports become available for
use at the device so as to allow the device to communicate data
over networks connected to the newly-enabled ports.

The term “network interface device” as used herein is a
hardware controller operable to provide an interface between
a data network and a data processing system. The controller
(or NIC) may be embodied as a peripheral card of a data
processing system or could be an embedded component of a
data processing system, such as a server, router or switch
device.

The applicant hereby discloses in isolation each individual
feature described herein and any combination of two or more
such features, to the extent that such features or combinations
are capable of being carried out based on the present specifi-
cation as a whole in the light of the common general knowl-

10

15

20

25

30

35

40

45

50

55

60

65

20

edge ofa person skilled in the art, irrespective of whether such
features or combinations of features solve any problems dis-
closed herein, and without limitation to the scope of the
claims. The applicant indicates that aspects of the present
invention may consist of any such individual feature or com-
bination of features. In view of the foregoing description it
will be evident to a person skilled in the art that various
modifications may be made within the scope of the invention.

We claim:

1. A network interface device providing a set of virtual
network interfaces, comprising:

one or more physical network ports and being configured to
communicate with a data processing system via an inter-
nal physical data bus, and

the network interface device configured to, on receiving a
network message having one or more predetermined
characteristics and comprising an authentication key
and configuration instructions defining a new virtual
network interface:

verify the authentication key; and

when the authentication key is successtully verified, create
the new virtual network interface defined in the configu-
ration instructions of the network message,

wherein the virtualized data processing system is config-
ured further to run a plurality of quest operating systems
running atop a hypervisor, the network interface device
being configured to support a different virtual network
interface for each of the plurality of guest operating
systems,

and wherein the network interface device is configured to,
in conjunction with creating the new virtual network
interface defined in the configuration instructions, via a
network interface device driver of the network interface
device, message the hypervisor to map the new virtual
network interface into a new guest operating system
created at the data processing system.

2. The network interface device as claimed in claim 1,
wherein said configuration instructions further comprise
modifying the parameters of a virtual network interface of the
set.

3. The network interface device as claimed in claim 1,
wherein the network interface device is configured to effect
the creation of the new virtual network interface by writing
values to a hardware register or non-volatile state memory of
the network interface device.

4. The network interface device as claimed in claim 1,
wherein the network message comprises one or more data
packets received in accordance with a predetermined messag-
ing protocol.

5. The network interface device as claimed in claim 4,
wherein the protocol is the Intelligent Platform Management
Interface protocol, or an extension thereof.

6. The network interface device as claimed in claim 1,
wherein the one or more predetermined characteristics
include one or more of:

(a) apredetermined identifier in the headers of at least some
of the data packets which together comprise the network
message;

(b) apredetermined pattern of data in the network message;
and

(c) address information in the network message identifying
the endpoint to which the message is directed such as IP
address and/or port number.

7. The network interface device as claimed in claim 1,
wherein the configuration instructions are encrypted and the
authentication key is the encrypted configuration instruc-
tions.

US 9,210,140 B2

21

8. The network interface device as claimed in claim 7,
wherein the network interface device is configured to verify
the authentication key by decrypting the encrypted configu-
ration instructions, the authentication key being successfully
verified if the encrypted configuration instructions are suc-
cessfully decrypted.

9. The network interface device as claimed in claim 1,
wherein the authentication key is one of a password, a cryp-
tographically-signed certificate, a pseudorandom number or a
hash of a set of predetermined data.

10. The network interface device as claimed in claim 1,
wherein the network interface device is configured to verify
the authentication key in accordance with the Transport Layer
Security (TLS) protocol or Internet Protocol Security (IPsec)
protocol.

11. The network interface device as claimed in claim 1,
wherein the network message is received from a local net-
work entity and the configuration instructions comprised in
said network message originate at a remote network entity,
the local network entity being a proxy for the remote network
entity.

12. The network interface device as claimed in claim 1,
wherein there exists a cryptographic pair of keys and the
authentication key is generated using a private cryptographic
key of the pair.

13. The network interface device as claimed in claim 12,
wherein a public cryptographic key of the pair is stored at the
network interface device and the network interface device is
configured to verify the authentication key using the public
key.

14. The network interface device as claimed in claim 12,
wherein the network interface device is configured to use a
public cryptographic key of the pair to establish an encrypted
channel over which the network message is received.

15. The network interface device as claimed in claim 12,
wherein the cryptographic key of the pair is stored at a net-
work entity from which the configuration instructions origi-
nate, the said network entity being configured to generate the
authentication key and transmit the authentication key and
configuration instructions to the network interface device.

16. The network interface device as claimed in claim 15,
wherein the network entity is accessible to the network inter-
face device over the internet.

17. The network interface device as claimed in claim 12,
wherein the network interface device includes a Trusted Plat-
form Module and the Trusted Platform Module holds a public
cryptographic key of the pair.

18. The network interface device as claimed in claim 14,
wherein the network interface device includes a Trusted Plat-
form Module and an endorsement key of the Trusted Platform
Module is used to establish the encrypted channel.

19. The network interface device as claimed in claim 14,
wherein the encrypted channel is established in accordance
with the Transport Layer Security (TLS) protocol or Internet
Protocol Security (IPsec) protocol.

20. The network interface device as claimed in claim 1,
wherein the network interface device is configured to verify
the authentication key at a state machine or processor of the
network interface device.

21. The network interface device as claimed in claim 1,
wherein the network interface device is configured to accept
the network message in a low power state.

22. The network interface device as claimed in claim 21,
wherein the network interface device further comprises a
management controller configured to perform said verifica-
tion of the configuration instructions and cause the creation of

10

25

30

35

40

45

60

22

the new virtual network interface defined in the configuration
instructions, the management controller being active in the
low power state.
23. The network interface device as claimed in claim 1,
wherein the data processing system comprises a Baseboard
Management Controller and the network interface device is
configured to pass Intelligent Platform Management Inter-
face messages received at the network interface device to the
Baseboard Management Controller.
24. The network interface device as claimed in claim 23,
configured to, on creating the new virtual network defined in
the configuration instructions, message the Baseboard Man-
agement Controller to indicate that the set of virtual network
interfaces has changed.
25. The network interface device as claimed in claim 1,
further comprising a non-volatile memory and being config-
ured to store the received configuration instructions in said
memory and at a later time to perform the creation of the new
virtual network interface defined in the configuration instruc-
tions of the network message at the instigation of a software
entity supported at the data processing system.
26. The network interface device as claimed in claim 1,
wherein the network interface device is configured to suc-
cessfully verify at least two different authentication keys
including a first authentication key and a second authentica-
tion key, the second authentication key having a lower privi-
lege level than the first authentication key.
27. A method configuring a network interface device pro-
viding a set of virtual network interfaces, the method com-
prising:
receiving at a network interface device a network message
having one or more predetermined characteristics, the
network message comprising an authentication key and
configuration instructions defining a new virtual net-
work, wherein the network interface device has one or
more physical network ports and is configured to com-
municate with a data processing system via an internal
physical data bus;
inresponse to receiving the network message, verifying the
authentication key at the network interface device; and

when the authentication key is successfully verified, creat-
ing the new virtual network interface defined in the
configuration instructions of the network message,

wherein the virtualized data processing system is config-
ured further to run a plurality of guest operating systems
running atop a hypervisor, the network interface device
being configured to support a different virtual network
interface for each of the plurality of guest operating
systems,

and wherein the network interface device is configured to,

in conjunction with creating the new virtual network
interface defined in the configuration instructions, via a
network interface device driver of the network interface
device, message the hypervisor to map the new virtual
network interface into a new guest operating system
created at the data processing system.

28. A system comprising:

a baseboard management controller, and

a network interface device providing a set of virtual net-

work interfaces, the network interface device having one
or more physical network ports and being configured to
communicate with a data processing system via an inter-
nal physical data bus,

the network interface configured to, on receiving a network

message having one or more predetermined character-
istics and comprising an authentication key and configu-
ration instructions defining a new virtual network inter-

US 9,210,140 B2

23
face, pass the configuration instructions and
authentication key to the baseboard management con-
troller which:

verifies the authentication key; and

when the authentication key is successfully verified, causes
the network interface device to create the new virtual
network interface defined in the configuration instruc-
tions of the network message,

wherein the virtualized data processing system is config-

ured further to run a plurality of guest operating systems
running atop a hypervisor, the network interface device
being configured to support a different virtual network
interface for each of the plurality of guest operating
systems,

and wherein the network interface device is configured to,

in conjunction with creating the new virtual network
interface defined in the configuration instructions, via a
network interface device driver of the network interface
device, message the hypervisor to map the new virtual
network interface into a new guest operating system
created at the data processing system.

29. The system as claimed in claim 28, wherein the net-
work interface device is further configured to pass Intelligent
Platform Management Interface messages received at the
network interface device to the Baseboard Management Con-
troller.

30. A virtualized data processing system comprising a
network interface device which is configured to provide a set
of virtual network interfaces,

the network interface device configured to, on receiving a

network message having one or more predetermined

10

15

20

25

24

characteristics and comprising an authentication key
and configuration instructions defining a new virtual
network interface:
verify the authentication key; and
when the authentication key is successfully verified,
create the new virtual network interface defined in the
configuration instructions of the network message,
wherein the virtualized data processing system is config-
ured further to run a plurality of guest operating systems
running atop a hypervisor, the network interface device
being configured to support a different virtual network
interface for each of the plurality of guest operating
systems,

and wherein the network interface device is configured to,

in conjunction with creating the new virtual network
interface defined in the configuration instructions, via a
network interface device driver of the network interface
device, message the hypervisor to map the new virtual
network interface into a new guest operating system
created at the data processing system.

31. The virtualized data processing system as claimed in
claim 30, wherein the network interface device is further
configured to store state for connections of the guest operat-
ing systems.

32. The virtualized data processing system as claimed in
claim 31, wherein the new guest operating system has
migrated to the data processing system from another data
processing system and the configuration instructions include
state for connections of the migrated guest operating system.

#* #* #* #* #*

